Predriver for High Resolution Computer Displays

For the availability of this product, please contact the sales office.

Description

The CXA1779P is a bipolar IC developed for high resolution computer displays.

Features

- Wide bandwidth ($150 \mathrm{MHz} /-3 \mathrm{~dB}$ typ.)
- RGB single package
- Permits RGB common and independent contrast control
- Permits RGB independent pedestal level control
- Input D-range: 0.7Vp-p (min.)

Applications

High resolution computer displays

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings

- Supply voltage Vcc 14 V
- Operating temperature Topr -20 to $+75{ }^{\circ} \mathrm{C}$
- Storage temperature \quad Tstg -65 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation PD 2.8 W

Recommended Operating Conditions

Block Diagram and Pin Configuration

(Top View)

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	Vcc	12V		Power supply pin.
2	R IN			
5	G IN	3.0 V	$\text { (2) } \cdot{ }^{129} \cdots \quad .$	input signal is 3.0 V during clamping.
8	B IN			
3	R DRV		Vcc	
6	G DRV		E	The variable range of the pin
9	B DRV	-	(3) $\cdot \mathrm{m}_{129}$	
12	PIX			RGB simultaneous contrast adjustment pin. The variable range of the pin voltage is from 0 to 5 V .
4	R GND			
7	G GND	OV		GND pins for the input amplifier block.
10	B GND			
11	REG	5 V		- Internal regulator stabilizing pin. - 5 V regulator output pin. - Attaches the decoupling capacitance $(0.01 \mu \mathrm{~F})$.
13	GND	OV		GND pin.
17	BO GND			
21	GO GND	OV		GND pins for the output stage buffer amplifier block.
25	RO GND			

Electrical Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}$, See Electrical Characteristics Measurement Circuit.)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. \& Item \& Symbol \& Measurement contents \& Min. \& Typ. \& Max. \& Unit \\
\hline 1 \& Current consumption \& Icc \& S1 to S7: OFF Input signal: None \& 50 \& 88 \& 120 \& mA \\
\hline 2 \& Frequency response \& f100MHz \& \begin{tabular}{l}
S1 to S7: ON \\
Input continuous 1 MHz and 100 MHz sine waves at \(0.7 \mathrm{Vp}-\mathrm{p}\), and measure the gain difference of the output amplitudes.
\end{tabular} \& -3 \& -1.5 \& - \& dB \\
\hline 3 \& Contrast control \& CONTmax \& \begin{tabular}{l}
S1 to S7: OFF Input video signal \(0.7 \mathrm{Vp}-\mathrm{p}\) and measure output signal amplitude Vout. Calculate the contrast gain from this Vout.
\[
\text { CONTmax }[\mathrm{dB}]=20 \log \left(\frac{\text { Vout }}{0.7}\right)
\] \\
RGB input signal \\
Measuring is possible with or without a sync signal.
\end{tabular} \& 13 \& 14 \& - \& dB \\
\hline 4 \& Brightness control \& \begin{tabular}{l}
BRTmax \\
\hline BRTmin
\end{tabular} \& \begin{tabular}{l}
S1 to S7: OFF \\
CLP pulse width: 300ns \\
Measure the pedestal level of the RGB output signal.
\end{tabular} \& -

- \& 3.5

1.9 \& -

- \& V

\hline 5 \& Sub contrast gain \& DRVgain \& | S1 to S7: OFF |
| :--- |
| Input video signal 0.7Vp-p and measure the variable width of output signal Vout. |
| Measuring is possible with or without a sync signal. | \& - \& -6 \& - \& dB

\hline
\end{tabular}

No.	Item	Symbol	Measurement contents	Min.	Typ.	Max.	Unit
6	Input D-range	D rang	S1 to S7: OFF Measure the level which maintains the output gain when the input video signal level is varied.	-	0.8	-	Vp-p
7	Minimum lamp pulse width	CLPmin	S1 to S7: OFF Measure the clamp pulse width where the pedestal level of output signal Vout does not fluctuate.				

Electrical Characteristics Measurement Circuit

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Operation

1. Contrast control

The contrast for RGB IN (Pins 2, 5 and 8) input signals is adjusted using a DC externally input to the PIX pin (Pin 12). In addition, the contrast for each RGB channel can be adjusted independently using a DC externally input to the DRV pins (Pins 3, 6 and 9). (See Graphs 1 and 2.)
2. Pedestal clamp and brightness control

The pedestal clamp clamps the pedestal level when the CLP pin (Pin 14) is high. The RGB IN pin voltage at the pedestal is approximately 3.2 V when the pedestal is clamped. The CLP pin threshold level is 3 V for V н and 1.5 V for VL. (See Fig. 2.)

Using a DC externally input to the R, G and B BRT pins (Pins 26, 22 and 18), the brightness control samples and holds the pedestal with the capacitance connected to the RGB SH pins (Pins 27, 23 and 19) when the CLP pin (Pin 14) is high, thereby adjusting the pedestal level of the R, G and B channels. (See Graph 3.)
3. Blanking additional function

Output is blanked when the BLK pin (Pin 16) is high. The BLK pin threshold level is 3 V for V_{H} and 1.5 V for VL. See the Example of Input/Output Signals for output signal levels. The output signal is 0.3 V during the blanking interval. (See Figs. 4 and 5.)

Example of Input/Output Signals

Fig. 1

Fig. 2

When a sync signal is added to the RGB input signal, after the signal is sliced into approximately 60 mV p-p inside the IC, it is amplified by the gain from the PIX and DRV pins and output.

Fig. 3

Fig. 4

Fig. 5

- 8 -

Example of Representative Characteristics

Graph 1. Contrast control (RGB common) characteristics

Input conditions for each control pin

Pin name		Pin voltage	
12	PIX	0 to 5	[V]
3	R DRV	4	[V]
6	G DRV	4	[V]
9	B DRV	4	[V]
26	R BRT	2.5	$[\mathrm{~V}]$
22	G BRT	2.5	$[\mathrm{~V}]$
18	B BRT	2.5	$[\mathrm{~V}]$
5	G IN	0.65	$[\mathrm{Vpp}]$

Graph 2. DRV control (RGB independent) characteristics (Gch)

Input conditions for each control pin

Pin name		Pin voltage	
12	PIX	4	$[\mathrm{~V}]$
3	R DRV	4	$[\mathrm{~V}]$
6	G DRV	0 to 5	$[\mathrm{~V}]$
9	B DRV	4	$[\mathrm{~V}]$
26	R BRT	2.5	$[\mathrm{~V}]$
22	G BRT	2.5	$[\mathrm{~V}]$
18	B BRT	2.5	$[\mathrm{~V}]$
5	G IN	0.65	$[\mathrm{Vpp}]$

Graph 3. BRT control characteristics

Input conditions for each control pin

Pin name		Pin voltage	
12	PIX	2.5	$[\mathrm{~V}]$
3	R DRV	2.5	$[\mathrm{~V}]$
6	G DRV	2.5	$[\mathrm{~V}]$
9	B DRV	2.5	$[\mathrm{~V}]$
26	R BRT	2.5	$[\mathrm{~V}]$
22	G BRT	0 to 5	[V]
18	B BRT	2.5	$[\mathrm{~V}]$
5	G IN	0.65	$[\mathrm{Vpp}]$

28PIN DIP (PLASTIC)

Two kinds of package surface:
1.All mat surface type.
2.Center part is mirror surface.

PACKAGE STRUCTURE

SONY CODE	DIP-28P-03
EIAJ CODE	DIP028-P-0600
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	4.2 g

